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We study policy experimentation in organizations with endogenous membership. An
organization decides when to stop a policy experiment based on its results. As information
arrives, agents update their beliefs, and enter or leave the organization based on their
expected flow payoffs. Unsuccessful experiments make all agents more pessimistic, but
also drive out conservative members. We identify sufficient conditions under which the
latter effect dominates, leading to excessive experimentation. In fact, the organization may
experiment forever in the face of mounting negative evidence. Ex post heterogeneous payoffs
exacerbate the problem, as optimists can join forces with guaranteed winners. Control by
shareholders who own all future payoffs, however, can have a corrective effect. Our results
contrast with models of collective experimentation with fixed membership, in which under-
experimentation is the typical outcome.
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1. INTRODUCTION

Organizations frequently face opportunities to experiment with promising but untested
policies. According to conventional wisdom, experimentation should respond to
information: agents should become more pessimistic after an adverse outcome, and they
should abandon an experiment if enough negative information accumulates. In addition,
when experimentation is collective, the temptation to free-ride and fears that information
will be misused by other agents lower incentives to experiment (Keller, Rady and Cripps
2005; Strulovici 2010). Thus, if anything, organizations should experiment too little.
Yet history is littered with examples of organizations that have stubbornly persisted
with unsuccessful policies to the bitter end. The Communist experiments of the 20th
century are a dramatic example: many Communist societies maintained rigid command
economies in the face of prolonged economic decline, in some cases all the way up until
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their governments were violently overthrown. Meanwhile, some like-minded European
parties—notably the French Communist Party—held fast in their support for the Soviet
Union even as it collapsed, and they themselves faded into irrelevance. Of course, these
collective projects had detractors. But rather than fight to change the course, many of
them left.

The same sort of collective rigidity is displayed by firms that relentlessly pursue
a revolutionary vision or new technology all the way to either ultimate success or
bankruptcy. This phenomenon is common at Silicon Valley companies and other start-
ups, such as Theranos and Moderna, many of whose employees are almost religiously
devoted to the company’s mission (Chen, 2022). These “true believers” become especially
overrepresented during hard times, because they are the least likely to quit.

Motivated by these and similar examples, we propose an explanation for obstinate
behavior by organizations. In our baseline model, an organization chooses in each period
between a safe policy, which yields a known flow payoff, and a risky policy of uncertain
quality, which yields lump sums arriving at random times if it is good, and nothing if it
is bad. There is a continuum of agents. They hold heterogeneous prior beliefs about the
type of the risky policy, but are otherwise identical. In every period, each agent decides
whether to participate in the organization, and obtain the flow payoff generated by its
policy, or receive a known outside option. All agents who participate in the organization
today are granted voting rights over tomorrow’s policy. More precisely, we assume that
the median voter—the member with the median prior belief—chooses tomorrow’s policy.
Whenever the risky policy is used, the results are publicly observed.

Our assumptions reflect three premises of our theory: agents can influence an
organization’s policy if they are members; they can enter and leave in response to
information; and some are more optimistic than others. The key observation is that,
under these conditions, new information affects both the beliefs of all agents and the
set of agents who desire membership. These effects offset each other: for instance, bad
news make all agents pessimistic, but also disproportionately induce those with low
priors to exit—and stop expressing dissent. As a result, the distribution of beliefs in an
organization can display a dampened or even contrary response to information. Our paper
thus formalizes Hirschman (1970)’s argument that members of a declining organization
may react by leaving (“exit”) or pushing for policy changes (“voice”), and that these
two forces can substitute for one another.

Our first main result provides conditions under which this logic leads to excessive
experimentation from the point of view of all agents. We show that over-experimentation
can take a particularly stark form, in which the organization never stops experimenting
in the face of failure. Perpetual experimentation is more likely when agents are patient,
the distribution of priors contains enough optimists, and the outside option is attractive,
so that exit is tempting. In fact, perpetual experimentation always obtains when the
outside option offers a close enough payoff to that of the organization’s safe policy.

Relative to a benchmark with a fixed decision-maker, two forces affect the pivotal
agent’s decision to experiment. On the one hand, the identity of the pivotal agent
gradually shifts to an ex ante more optimistic member as bad news accumulate. On the
other hand, the current pivotal agent is reluctant to continue experimenting precisely
because she has limited control over future policy choices. The first force pushes the
organization to over-experiment, while the second makes each agent more cautious.
Excessive experimentation results when the first force dominates. When perpetual
experimentation does not obtain, this interplay of forces can lead to too much or too
little experimentation from the point of view of the initial pivotal agent.
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We also show that the emergence of perpetual experimentation is robust to several
variations in assumptions, including general voting rules, size-dependent flow payoffs or
learning rates, barriers to reentry, and different learning processes, such as bad news or
imperfectly informative good news. Moreover, when news are imperfectly informative,
it is possible for an organization to abandon the risky policy only after a successful
streak. Paradoxically, the organization may thus experiment more precisely when the
risky policy is bad; failure may lead to radicalization, while success may render the
organization more conservative and prone to abandoning the very engine of its success.

Our main results also extend to an alternative model in which the risky policy is good
for some agents and bad for others ex post, and winners and losers are revealed through
experimentation (as in Strulovici 2010). In fact, the problem of over-experimentation
becomes more severe in this case, as ex ante optimists can make common cause with
revealed winners. Finally, perpetual experimentation is also possible if the intensity
of membership is adjustable, and the agents are risk-averse. In that case, there is
additional selection at the intensive margin: optimists are all in, and gain outsize influence
even relative to other members. However, we show that perpetual experimentation
is impossible if the organization is a publicly traded firm, controlled by (risk-averse)
investors whose stakes represent ownership of the firm’s present and future payoffs.
Although there is again selection at the intensive margin, in the long run, a shrinking
population of optimists will struggle to hold all of the company’s volatile stock, leading
to falling share prices and an eventual takeover by pessimists. Capital markets can hence
have a corrective effect on the tendency of organizations towards obstinate behavior.

The rest of the paper proceeds as follows. The rest of this section reviews the related
literature and several applications of the model. Section 2 introduces the baseline model,
and Section 3 analyses its equilibria. Section 4 presents two extensions: one allowing for
ex post winners and losers, and another that models a publicly traded firm. Section 5
concludes the paper. All proofs are in Appendix A. Additional extensions are presented
in Appendix B.

1.1.  Related literature

This paper is related to the literature on strategic experimentation with multiple agents
(Keller et al. 2005, Keller and Rady 2010, 2015, Strulovici 2010), as well as the literature
on dynamic decision-making in clubs (Acemoglu et al. 2008, 2012, 2015, Roberts 2015,
Bai and Lagunoff 2011, Gieczewski 2021).

In Keller, Rady and Cripps (2005) and Keller and Rady (2010), multiple agents
with common priors control two-armed bandits of the same type which may have
breakthroughs at different times. In this setting, there is under-experimentation due to
free-riding, but encouragement effects can also arise. This is especially true if the agents
have asymmetric information (Dong, 2021). These effects are not present in our model,
as we assume a single collective decision in each period about whether to experiment,
and there is no asymmetric information.’

In Strulovici (2010), a group of agents decides by voting whether to collectively
experiment with a risky technology. Agents have common priors, but experimentation

1. While there is free-riding insofar as outsiders benefit from the option value of experimentation,
it is not socially costly because the learning rate is independent of the organization’s size. However,
perpetual experimentation can result even when the learning rate is endogenous, as shown in Appendix
B.
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gradually reveals each to be a winner or loser from the risky technology. In equilibrium,
there is too little experimentation because agents fear being trapped into using the new
technology as losers if there are enough winners in favor, and vice versa.

There is a similar motive to under-experiment in our model: because pessimists exit
after bad news, a pivotal agent may halt experimentation early to avoid a takeover by
over-experimenting optimists. However, when each pivotal agent is optimistic enough to
take that risk, the selection effect dominates, and the same exit option instead causes
over-experimentation. The two models also differ in that, in Strulovici’s model, learning
exacerbates the conflict between agents, while in our model learning helps agents converge
to a common belief. However, our main results survive in a “heterogeneous outcomes”
version of our model that is directly comparable to Strulovici (2010) (see Section 4.1).

The literature on decision-making in clubs studies dynamic policy choices that
determine current flow payoffs as well as control over future decisions. Most papers
on this topic assume discrete policy spaces (Acemoglu et al. 2008, 2012, 2015, Roberts
2015), as we do. In contrast, Bai and Lagunoff (2011) and Gieczewski (2021) study the
case of a continuous policy space, which yields very different results—mnamely, the policy
converges along a smooth transition path to a myopically stable state. This literature
has focused on models with fixed, known environments,? with tensions arising due to
conflicting preferences. In contrast, our agents differ only in their beliefs. And, more
importantly, they live in an uncertain environment that they can learn about depending
on their choices. In particular, our result that the long-run equilibrium policy may be
desired by almost nobody—as in the case of perpetual experimentation—is driven by
learning and is novel to the literature. Finally, our paper shares with Gieczewski (2021)
an interest in organizations that allow agents to join or leave. This is mainly a superficial
connection, as the model in Gieczewski (2021) can be relabeled to fit the more standard
case of policy choices that directly shape the set of decision-makers (e.g., immigration
policy). Our paper is also the first in this literature to consider membership of variable
intensity.

1.2.  Applications

In this Section, we discuss how our assumptions map to different applications such as
political parties, political reforms, firms and cooperatives, and give examples of each.

Political parties Our model captures the internal dynamics of political parties
choosing between a “safe” mainstream platform—for example, social democracy—and a
more extreme alternative—for example, a communist platform preaching the imminent
collapse of capitalism. The selection of extremists into extremist parties, which intensifies
when such parties are unsuccessful, explains their rigidity in the face of setbacks.

The decline of the French Communist Party (FCP) fits this pattern. In the 1980s,
many high-profile FCP members became disillusioned with the party’s platform as
they absorbed a stream of negative signals—mnamely, the unraveling of the Communist
experiment in the Eastern Bloc. Ross (1992, 54), for example, writes of the dissenters in
the party that “by autumn 1989, in the face of eastern European disasters, rebel ranks
grew larger and larger”.

2. An exception is Acemoglu et al. (2015), which only proves some general results in a framework
with exogenous shocks that does not nest our model.
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Yet many more detractors left the party, as the FCP was “no longer capable of
appealing to the broader community of French intellectuals” (Hazareesingh 1991, 3).
For example, Pierre Juquin, a prominent member who became a leader of the moderate
faction, was “ousted from the Politbureau Central Committee in 1987, and expelled from
the party after declaring his independent presidential candidacy” (Bell and Criddle 1989,
524).

As a result, the party failed to adapt and remained loyal to the Soviet Union, to the
point that it came “to be equated with the televised image of bureau politique member
Pierre Blotin enthusiastically attending the Romanian Communist Party congress days
before the deservedly ignominious end of the Ceaucescus” (Ross 1992, 54). The FCP’s
electoral support thus declined from a base of roughly 20% in the postwar period to less
than 3% in the late 2010s (Bell 2003, Damiani and De Luca 2016), with a precipitous
drop in the 1980s. Indeed, “by 1990 what little attention was paid to it portrayed it as
a crank, marginalized organization” (Ross 1992, 44). Even decades later, it retained the
main tenets of its platform, such as the claim that capitalism is on the verge of collapse.?

Reforms Our model also speaks to the dynamics of political reforms. In this
application, agents are residents of a country or city that is trying a reform with uncertain
results. The residents can stay and try to influence policy, or they can leave. Our baseline
model is appropriate if the reform is equally good or bad for all. The “heterogeneous
outcomes” variant of our model in Section 4.1 covers reforms that create unexpected
winners and losers (c.f. Strulovici (2010), who suggests trade liberalization or a switch
to a centralized economy as examples of ex post-unequal reforms).

The Communist experiments of the 20th century illustrate the relationship between
emigration and political pressure. Some Communist countries—most notably, the Soviet
Union and East Germany—imposed very strict barriers to emigration, while others, such
as China and Cuba, had milder restrictions (Dowty 1988). In accord with our model, the
Communist regimes of the Soviet Union and East Germany collapsed, but not those of
China or Cuba.? Even the regimes that failed, however, took a long time to do so. One
possible reason is that, as we show in Section 4.1, support for experimentation is even
more robust when outcomes are heterogeneous, as ex ante optimists can join forces with
revealed winners.

In a similar vein, Sellars (2019) argues that emigration served to preserve the political
status quo in Mexico and Japan in the 1920s, as many detractors (e.g., supporters of
agrarian reform in Mexico) were young men in search of economic opportunity that
they could also find abroad. Finally, examples abound of the “Curley effect” (Glaeser
and Shleifer 2005), whereby politicians shape their electorate to maintain power. For
instance, the eponymous mayor Curley of Boston induced the rich to emigrate with
redistributive policies favoring his base of poor Irish constituents; mayor Coleman
Young of Detroit drove white residents and businesses out of the city; and Robert
Mugabe of Zimbabwe harassed white farmers and seized their property, precipitating
their emigration (Meredith 2002).

3. See, for example, the FCP’s 2013 manifesto: http://congres.pcf.fr/35745.
4. Notably, many Cuban emigrants were dissidents, as reflected in the high numbers of Republican-
leaning Cuban Americans (Bishin and Klofstad, 2012).
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Firms Finally, our model can explain the behavior of rigidly ambitious firms. An
extreme example is Theranos, a Silicon Valley start-up founded by Elizabeth Holmes in
2003. Theranos sought to produce a portable machine capable of running hundreds of
medical tests on a single drop of blood, a vision as revolutionary as it was difficult to
realize. Over the course of ten years, the firm spent over a hundred million dollars in
pursuit of this vision, while doing little to develop incremental innovations as a fall-back
plan. It eventually launched in 2013 with inaccurate and fraudulent tests, and never
recovered from the ensuing scandal.

Over the ten years leading up to Theranos’s turn to fraud, a pattern repeated itself.
The company would bring in high-profile hires and create enthusiasm with its promises,
but once inside the organization, employees and board members would gradually become
disillusioned by the lack of progress.® As a result, many left the company,® even as those
who saw Holmes as a visionary remained. Though the board came close to removing
Holmes as CEO early on (Carreyrou, 2018, 50), she retained control for many years
after, because too many who had lost faith in her leadership had quit before they could
form a majority.

The selection of “true believers” into the company was thus exacerbated by its lack
of progress with its technology. In a similar fashion, Moderna, the biotech company later
famous for developing novel mRNA vaccines for COVID-19, was characterized in 2016 as
having run into roadblocks in its ambitious projects, lost top talent, and simultaneously
retained employees that “live the mission” and “speak with respect bordering on awe
about Moderna’s promise” (Garde, 2016).

The mapping of our model to firms depends on where the locus of decision-making
lies in the firm. In a start-up, the relevant decision-makers may be all employees above a
certain level, with comparable influence over decisions. In this case, our baseline model is
appropriate. For a larger firm controlled by investors free to trade shares on the secondary
market, a better fit is the model we develop in Section 4.2.

Finally, cooperatives are a related mode of organization that closely fit the
assumptions of our baseline model. Here agents are individual producers who own factors
of production. In a dairy cooperative, for example, each farmer owns a cow. The farmer
can manufacture and sell his own dairy products, or he can join the cooperative. If he
joins, his milk will be processed at the cooperative’s plants, which benefit from economies
of scale. The cooperative can follow a safe strategy, such as selling fresh milk and yogurt,
or pursue a risky one—for example, developing premium cheeses that may or may not
become profitable. Should the latter strategy be used, only farmers optimistic enough
about its viability will join or remain in the cooperative. Moreover, cooperatives typically
allow their members to elect directors.

5. For instance, Theranos’s lead scientist, lan Gibbons, told his wife that “nothing at Theranos
was working,” years after joining the company (Carreyrou, 2018, 146).

6. For example, while deciding whether to buy more shares of the company at a low price, board
member Avie Tevanian was asked by a friend: “‘Given everything you now know about this company,
do you really want to own more of it?” When Avie thought about it, the answer was no” (Carreyrou,
2018, 40).
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2. THE BASELINE MODEL

Time ¢ €[0,00) is continuous. There is an organization that has access to a risky policy
and a safe policy. The risky policy is either good (#=G) or bad (¥=B) and its type, 9,
is persistent.

There is a continuum of agents, distributed according to a continuous density f over
[0,1]. An agent’s position indicates her beliefs: an agent x € [0,1] has a prior belief that
the risky policy is good with probability x. All agents discount the future at rate ~.

At every instant, each agent chooses whether to be a member of the organization.
Agents can enter and leave the organization at no cost. Agents who choose not to be
members work independently and obtain a guaranteed autarkic flow payoff a. The flow
payoffs of members depend on the organization’s policy.

While the organization uses the safe policy (¢ =0), all members receive a guaranteed
flow payoff s. When the risky policy is used (m¢=1), their payoffs depend on its type.
If the risky policy is good, it produces successes which arrive at the jump times of a
Poisson process with rate . If it is bad, it never succeeds. Each time the risky policy
succeeds, all members receive a lump-sum payoff of size h. At other times, they receive
zero. We denote by g=\h the expected flow payoff of the good risky policy.

We assume that 0 <a<s<g: the good risky policy dominates all other policies, the
bad risky policy is the worst option, and the organization’s safe policy is preferable to
the outside option.”

When the risky policy is used, its successes are observed by everyone. By Bayes’ rule,
an agent with prior x who has seen the organization experiment unsuccessfully for a
length of time ¢ believes that the risky policy is good with probability

zef)\t

S s (2.1)

pe(z)

Of course, all posteriors jump to 1 after a success.

The structure of the game is as follows. At each instant ¢ >0, policy and membership
decisions are made. That is, first the organization’s median member chooses the policy
to be used in the immediate future.® After this, all agents are allowed to enter or leave
the organization.

To simplify the presentation, we make two assumptions. First, we assume that the
risky policy is being used at the start of the game, that is, myp=1.? Second, we assume
that a switch to the safe policy is irreversible.!® We focus on Markov Perfect Equilibria,

7. Our model features a single organization with access to a risky technology. We can, however,
allow for the existence of other organizations that only have access to safe technologies. a can be
interpreted as their (maximal) productivity. The assumption a<s means that the organization with
access to the risky technology also enjoys a competitive edge in the realm of safe technologies. Our main
results go through if a>s, but become less interesting as there is no opportunity cost to having the
organization experiment.

8. The set of members will in fact always be an interval, hence Lebesgue measurable, so the median
is well defined. Equivalent results are obtained if we instead assume majority voting, as the median will
be decisive.

9. Starting with the safe policy at t=0 is equivalent to starting with the risky policy, unless
the population median finds the continuation in the latter scenario inferior to the payoff from never
experimenting, in which case experimentation never begins.

10. We show in the Appendix that this assumption is without loss of generality: in a more general
model with unlimited policy changes, switches to the safe policy are permanent in every equilibrium.
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that is, equilibria in which strategies condition only on the information about the risky
policy revealed so far and on the incumbent policy.

Since optimal membership decisions are quite simple, it is convenient to embed them
directly into the definition of equilibrium, as follows. Note that optimal membership
decisions must condition only on flow payoffs, even though the agents are forward-looking;:
x wants to be a member at time ¢ if and only if s+m¢(pt(z)g—s)>a. This is because
there is free entry and exit, so there is no need to remain a member during lean times to
retain access to future payoffs, or vice versa; and because there is a continuum of agents,
so an agent derives no value from her ability to vote. In particular, if the risky policy
is being used at time ¢ and no successes have occurred, x will be a member if and only
if pt(z)g>a. Clearly, p;(x) is increasing in z: ex ante optimists remain more optimistic
after observing information. Hence, if the organization has experimented unsuccessfully
until ¢, the set of members at ¢ will be an interval of the form [y,1], where y; is defined
by the condition p;(y:)= %. Equation (2.1) implies that y;= W. This, in turn,
pins down the identity of mys, the median member at time ¢ under experimentation, as
the median of F restricted to [y,1]. On the other hand, if the safe policy is being used, or
the risky policy is being used after a success, then all agents will choose to be members,
as s,g>a. And the organization should of course always use the risky policy after a
success.

In this “reduced-form” model, the only strategic decision left is the policy choice
made by the pivotal agent at each time ¢ to continue experimenting or not, assuming
there have been no successes. We say t is a stopping time if m; would choose to stop
experimentation at time ¢. We can then define an equilibrium as follows.!!

Definition 1. An equilibrium is given by a set of stopping times T C[0,00) such that:

(i) If the organization has experimented unsuccessfully until time t, it continues to
experiment (t¢T ) if and only if m¢’s payoff from the equilibrium continuation is
greater than the payoff from switching to the safe policy, %

(i) If my is indifferent because experimentation will stop immediately regardless of
her action, but she strictly prefers experimentation (not) to continue for any length
of time €>0 small enough rather than stop, then she chooses (not) to continue
experimenting.

To state Conditions (i) and (ii) more formally, it is useful to define the following value
functions. Let Vip(y) be the continuation utility of an agent with current belief y who
expects experimentation to continue for a length of time 7', counting from the present. Let
V(y) be the same agent’s continuation utility if she expects experimentation to continue
forever, i.e., V(y)=limp_,, Vpr(y). Note that Vp(y) and V(y) are exogenous functions
of the primitives, not equilibrium objects. (Explicit formulas are given in Lemma 2 in
the Appendix.)

Then, at time ¢, m; expects experimentation to continue until time ¢ =inf{t" >¢:#" €
T} if she does not stop. Condition (i) then requires that t€ 7T if Vi (pe(my)) <% and

The reason is that switching to the safe policy brings in more pessimistic members, and hence yields
control to a median even more pessimistic than the one who chose to stop experimenting.

11. In Appendix B, we provide a formal definition of equilibrium that includes full membership and
policy strategies as primitives.
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t&T if Vi_i(pr(mye)) > % Condition (ii) requires that, if # =t, then t € T if Ve(pt(my)) <
for all €>0 small enough, and t¢ T if Ve(p(my)) >% for all ¢>0 small enough.

Though part (i) of the definition is straightforward, it embeds an important
assumption about the timing of policy and membership decisions: taking m; to be pivotal
at time t presumes that, for the organization to stop experimenting, a majority of those
who chose to be members under experimentation must be in favor of stopping. We are
thus implicitly ruling out the possibility of a large number of detractors of the current
policy coordinating to join the organization and immediately changing its policy.

One way to microfound this restriction would be to assume that agents only gain
voting power with a time lag v >0, so that it is in fact my—, who chooses the policy at
time ¢. In such a model, if the organization switched to the safe policy at time tg due to
an “invasion” by pessimists, agents with no faith in the risky policy would strictly prefer
to delay joining until ¢g, and thus would not vote until ¢tg+v, so the invasion would not
actually materialize. As this argument applies for all v >0, we require our equilibria to
obey this property, even if we are in fact taking v =0 for simplicity.

Condition (ii) imposes an additional tie-breaking rule in order to eliminate undesirable
equilibria of the following variety. 7 =[0,00), for instance, satisfies Condition (i)
vacuously even if experimentation is desired by all agents, because any agent who deviates
and chooses experimentation would see her decision immediately overturned. To rule out
such equilibria, we require optimal behavior even when the agent’s policy choice only
affects the path of play for an infinitesimal amount of time.'?

S
~

3. ANALYSIS

In this Section we characterize the set of equilibria of the baseline model. We first provide
conditions under which perpetual experimentation is the unique equilibrium outcome,
and then show the range of possible outcomes when these conditions are not met. Finally,
we discuss the welfare properties of the model, and a simple extension with noisy news.

3.1.  Perpetual experimentation

It is useful to first note a few properties of our reduced-form model. First, the equilibrium
stopping time, which we will denote by tg, is the smallest (or, more generally, the infimal)
element of 7. (If the risky policy is used forever, that is, 7 =10, we write ty =o00.) Other
elements of 7 only serve to inform the agents’ expectations about what will happen
if they deviate. Second, the population dynamics implied by the optimal membership
decisions are as follows. As long as no successes are observed, all agents become more
pessimistic and the organization contracts. That is, p;(«) decreases in ¢ for all x, and y;
increases towards 1. Of course, after a success or a switch to the safe policy, all agents
join and remain members forever, and there is no further learning.

We can now state Proposition 1, which provides necessary and sufficient conditions
for perpetual experimentation to arise in equilibrium.

12. Condition (ii) is in the spirit of weak dominance: an agent who prefers experimentation should
experiment if she expects her successors to tremble and continue experimenting with some positive
probability.
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Proposition 1. Perpetual experimentation (T =0) is an equilibrium of the game if and
only if V(pe(my)) Z% for all t. It is the unique equilibrium if and only if the inequality
is strict for all t.

The first part of Proposition 1 is straightforward. Recall that m; is the pivotal agent
at time ¢ under unsuccessful experimentation, and p¢(my) is her posterior belief when
she is pivotal. V(pt(me)) is thus her expected continuation value when pivotal, if she
chooses to continue experimenting and expects that no future pivotal agent will stop. %,

on the other hand, is her payoff if she stops. It follows that, if V' (p(my)) <% for any t,
then perpetual experimentation is not possible: if no one will stop experimenting after ¢,
then my would herself make the choice to stop. On the other hand, if V (p¢(my)) 2% for
all ¢, then perpetual experimentation is an equilibrium by the same logic: if all pivotal
agents expect experimentation to never end, they are reduced to making a binary choice
between their respective V(p¢(my)) and %, of which they weakly prefer the former.

What is less immediate is why, when perpetual experimentation is an equilibrium, it
is the only one.!®> The key here is that if an agent prefers to experiment forever rather
than not at all, she also prefers to experiment for any finite amount of time T rather
than not at all. Thus, any pivotal agent m; for whom V (p¢(my)) >% will never choose to
halt experimentation in equilibrium, no matter what she conjectures that her successors
will do.

The technical reason for this result is that Vi (y) is (strictly) single-peaked in T'. That
is, letting T* =argmaxpVp(y) be the (finite) stopping time an agent would choose if she
could control the policy at all times, her payoff decreases as T' deviates from T™ in either
direction. Since Vo(pt(mt))zg and limp_, o Vip(pe(me)) =V (pe(my)), it follows that, if
V(pe(me))> 2, then Vp(pi(mq)) > 2 for any 7> 0.

We prove the single-peakedness by calculating Vip(y) explicitly (Lemmas 2 and 3 in the
Appendix). But it is an intuitive result: Vip(y) is what the agent would get from staying in

the organization until her posterior reaches % (assuming unsuccessful experimentation),

and after that, staying out until there is a success or the safe policy is adopted (at time
T). The higher T is, the more pessimistic the agent will be at time 7', and the less she

would want to prolong experimentation.

— Ye
Pro-risky policy
Pro-safe policy
Non-members

FIGURE 1

Pivotal member, indifferent agent, and marginal member on the equilibrium path

13. There are multiple equilibria due to indifference if min¢ V' (p¢(m¢)) = %, but this is a knife-edge
case.
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1 === pe(my)
........ pe(zy)
— pt(yf
x| s,
0 t
FIGURE 2

Posterior beliefs on the equilibrium path

Figure 1 illustrates the equilibrium dynamics under perpetual experimentation, for
the case a=1, s=1.725, h=1, A=v=6, and f uniform over [0,1]. As the organization
experiments unsuccessfully, all agents become more pessimistic. Denoting by x¢ the agent
indifferent about stopping experimentation at time ¢ (defined by V(pt(xt)):%), this
implies that x¢ is increasing in ¢. Thus there is a shrinking mass of agents in favor of the
risky policy (the agents shaded in crossed lines in Figure 1) and a growing mass against
it (shaded in lines and dots). For high ¢, most agents want experimentation to stop.

Growing pessimism, however, induces members to leave. Hence the marginal member
becomes more extreme, and so does the median member: as y; increases, so does my.
If my > for all ¢, that is, if the prior of the median is always higher than the prior
of the indifferent agent, then the risky policy always retains majority support in the
organization due to most of the opposition forfeiting their voting rights.

Figure 2 shows the same result in the space of posterior beliefs. The accumulation
of negative information puts downward pressure on py(my) as t grows, but the selection
effect prevents p¢(my) from converging to zero. Instead, py(m¢) converges to a belief
strictly between 0 and 1, which is above the critical value p¢(z¢) in this example. Hence
the pivotal member always remains optimistic enough to continue experimenting.

The result, perpetual experimentation, is clearly excessive: though in a world of
heterogeneous priors agents disagree about the optimal length of experimentation,
perpetual experimentation is excessive from the point of view of all agents except those
with prior belief exactly equal to 1.

For what parameter values will V(pi(m¢)) be greater than £ for all ¢, leading
to perpetual experimentation? Our next set of results aims to answer this question.
Firstly, Proposition 2 provides either bounds or explicit closed-form expressions for
inf; V(pe(my)) for several families of prior belief distributions, allowing us to easily
check the conditions of Proposition 1 in these cases. Secondly, the comparative statics
established in Proposition 1 allow us to use the results Proposition 2 as bounds for all
distributions.

Proposition 2. The value function V in Proposition 1 satisfies the following:

(i) If [ is non-decreasing, then

>R

) 2a 2ga N\ XYa(g—a) X
721210 (pe(me)) =7 (g—i—a) g+a+(2> g+a y+A
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(i) Suppose f(x)=fu(x):=(w+1)(1—x)* for x€[0,1] and f(x)=0 elsewhere, for
1
any w>0. Then, denoting n=2" w+1,

. a ga 1+x  a(g—a) A
fv =~V = s _
720 (pe(me)) =~ (ng+(1—n)a> ng+(1—ma T ngr(I—may+A

(iii) Let f be any density with support [0,1]. Then

. a a(g—a) A
v >~V =)= _
vinf (pe(me)) >y (g) =
In calculating the value of inf;V (pt(my)), a key step is to find infyps(my), the infimal
posterior belief of a pivotal agent on the equilibrium path. It is shown in part (i) that,
if f is non-decreasing, then inf;ps(my) =-2%. To illustrate the derivation, suppose that

gta
f is uniform. Then m;= Héyt , where y; =

2a+(g—a)e
2a+2(g—a)e—*
which converges to fﬁ from above as t— oco.

The case of a non-increasing density presumes that there are enough optimists in
the population. Part (ii) shows that the faster f(z) approaches 0 as x—1, the lower
the value of infyps(my), as the median my is closer to the bottom of the interval [y;,1].
In particular, if f(x)~(1—2)%, then inf;p(m¢) = m. At the other extreme, part
(iii) gives a lower bound based on the principle that ps(me) > pe(yt) = %, no matter the
shape of f.

The other step in the proof of Proposition 2 is to calculate V(y) for a generic belief y.
(A general formula is given in the Appendix.) The resultant expressions—for instance,

%)—have a natural interpretation. The first term, 92%, is the
payoff the agent would get if she was locked into the organization forever: her posterior
belief, 92%, times the expected flow payoff g of the good risky policy. The second term
is the option value of the agent’s exit and reentry options.

The following corollary leverages Proposition 2.(iii) to highlight the importance of

the gap between s and a:

—7 as shown in Section 2. Thus m;=

___a
a+(g—a)e
. . . . _ 2a+(g—a)e™ M
which, by way of equation (2.1), implies that p¢(my)= St (g—a)(i1e=20)

the expression for V(

Corollary 1. Ifac <1+Q_SS/\>\’S:| , there is perpetual experimentation.
g 7+

In other words, for any values of the other parameters, including the distribution of
priors, if a is close enough to s—that is, if the organization’s safe policy is not much
better than the outside option—then the organization never stops experimenting. The
reason is that the selection effect is at its strongest in this case, as most supporters of
the safe policy are tempted to exit before their voices can make a difference.

Our next result concerns the comparative statics of our model.

Proposition 1. If there is an equilibrium with perpetual experimentation under
parameters (A h,s,a,v,f), then the same holds for any set of parameters (A,h,$,a,7,f)

such that A>\, Ah=Ah, §<s, a>a, Y<~v and f MLRP-dominates f, i.e., % is

non-decreasing in z.
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The intuition is as follows. A decrease in s makes the safe policy less attractive and
has no effect on the payoff from perpetual experimentation. A decrease in v makes the
agents more patient, which increases the option value of experimentation. An increase
in A while holding g fixed increases the learning rate, with similar consequences.'* An
increase in a has two effects that favor experimentation: it increases the expected payoff of
experimentation (which entails collecting the outside option with some probability), and
it induces agents to quit, leaving the organization with a more radical median member.

Finally, an increase in the number of optimists leaves the value function V' and
the marginal member g; unchanged, but results in a more optimistic median—an my
higher up within the interval [y, 1]—who is more likely to support experimentation.
In particular, then, for any f that MLRP-dominates f,, as defined in Proposition 2.(ii),
infV(p¢(my)) is at least as high as the expression given in Proposition 2.(ii). We can thus
give tighter bounds than the general bound in Proposition 2.(iii) whenever f decreases
at a rate bounded by a power law.

3.2.  Finite experimentation

If perpetual experimentation is not an equilibrium, there may be multiple equilibria
featuring different levels of experimentation, supported by different off-path behavior.

To characterize them, it is useful to define a stopping function 7:[0,00)— [0,00] as
follows: for each ¢t >0, 7(¢t) is the highest # > ¢ such that m; weakly prefers experimentation
to continue until ¢, relative to stopping right away. In particular, Vi) —t(pe(me)) = % (It
the agent does not want to experiment at all, then 7(¢)=t, while if she would accept
perpetual experimentation, then 7(¢)=o00.) Proposition 3 characterizes the set of pure
strategy equilibria in this setting.

Proposition 3.

(i) Any pure strateqy equilibrium with finite experimentation, T #0, must be a
sequence of the form (tg,7(to),7(7((tg)),...) for some to<7(0). The sequence may
be finite, ending at a fized point of T, or infinite.

(ii) There exists to €[0,7(0)] for which (to,7(tg),...) is an equilibrium.

(iii) If T is non-decreasing and 7(0) is finite, then (to,7(to),...) is an equilibrium for
all to€[0,7(0)].

(i) If T(t)=00 for all t€[0,T], then to>T for any equilibrium stopping time tq.

Part (i) describes the general structure of a non-empty set of equilibrium stopping
times: each element ¢, of the sequence must be chosen to leave the previous pivotal
agent who stops in equilibrium, my, ,, indifferent. The logic is that, if stopping times
were any further apart (so that my, , strictly wanted to stop, given the next expected
stopping time), some later pivotal agent my, , +. would also want to stop, by a continuity
argument. Conversely, if they were any closer, my, _, would not stop at all, by the single-
peakedness of V. Moreover, the initial (on-path) stopping time ¢ty must be weakly before
7(0), as otherwise mg would deviate and stop right away.

14. In contrast, the effect of an increase in h (holding A constant) is ambiguous: while a higher
payoff from the good risky policy encourages experimentation, it also discourages exit, weakening the
selection effect. However, the first effect dominates for all the prior distributions covered in Proposition

2.(1)-(i).
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Setting to € [0,7(0)] and ¢, =7"(tg) indeed guarantees that mg will not stop and that
my,, is indifferent for all n. Part (iii) establishes that, under a regularity condition—if
7 is increasing!®—this is all we need for 7 to be an equilibrium, so every tg between
0 and 7(0) can be supported as a stopping time by a (unique) set of conjectures about
off-path behavior. If 7 is nonmonotonic, not all sequences of the form (¢,7(¢),...) will be
equilibria, because some pivotal agents between my, and my¢,, are more eager to stop
than my, is. But, by part (ii), there is always some tg for which this construction does
yield an equilibrium.

It is easy to see that mg’s optimal stopping time lies between 0 and 7(0). Thus,
from her point of view, both over and under-experimentation are possible depending
on which equilibrium is played. Under-experimentation obtains if an early pivotal agent
expects that, should she continue experimenting, the next stopping time will be too
far in the future—that the organization will go down a “slippery slope” of excessive
experimentation. In this scenario, the agent is compelled to stop experimentation while
the decision is still in her hands, even at a time too early for her liking.'6

Finally, part (iv) shows that perpetual experimentation is, in a sense, robust: if the
condition V (ps(my)) > % holds for all ¢ up to some T', then experimentation must continue
until at least T'. (As noted previously, agents willing to experiment forever will never stop
experimentation.) This implies that, if there is perpetual experimentation under a density
f(z), then there is almost perpetual experimentation (until an arbitrarily late T') under
a truncated density of the form f(z)1;<1—. for €>0 small enough. Selection forces can
thus have powerful consequences even if the distribution of priors is bounded away from
1.

There are another two ways in which our results have bite even if the baseline
model, as presented, is too stark to be realistic (in particular, as it assumes that the
organization’s size can contract to nothing in the limit). First, if the organization is
forced to disband below a minimum size S <1, then when this size is reached (i.e., for
t such that 1— F(y;)=.S) the safe policy would be adopted, but experimentation would
continue until ¢ under the conditions of Proposition 1. Second, all of our analysis is
unchanged if the population is growing over time—for example, if at time ¢ there are e
agents, with priors drawn from the density f, for some a>0. This assumption may be
appropriate for countries undergoing political reforms, and is also applicable to startups,
which may reach more and more potential employees and investors with each round of
hiring and fundraising. In both cases, population growth may mask the effects of exit on
size, at least temporarily.

3.3. Welfare

It is instructive to consider how the equilibrium and its welfare properties change as
we vary the quality of the outside option, a. As a welfare benchmark, we focus on the
equilibrium utility of the initial pivotal agent, mg, net of the utility she could obtain if
she controlled the policy at all times, maxp Vp(mg). Figure 3 plots this quantity as a

15. 7 is guaranteed to be increasing if p;(m:) does not decrease too steeply. For example, if f(z) o< Z%
for all x> %, then pi(mye) = gi—aa is constant, so 7(¢) —t is constant, and 7 is obviously increasing.

16. This force is related to the cause of under-experimentation in Strulovici (2010) in that, in both
cases, agents under-experiment to avoid a loss of control over future decisions. Similar concerns about

slippery slopes are the focus of the clubs literature (Bai and Lagunoff (2011), Acemoglu et. al. (2015)).
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Welfare T
gap 0

to =0 to < oo top = oo top = o0

FIGURE 3

mo’s equilibrium welfare loss relative to her first-best stopping time

function of a.!'” (Note that my is itself a function of a.) The shaded region represents
the range of welfare outcomes that obtain when multiple equilibria exist.

For a > s, the organization experiments forever, but this outcome is in fact optimal, as
no agent is interested in the organization’s safe policy. For a €[a,s|, we are in the world
of Proposition 1: there is perpetual experimentation, which is excessive for all agents, in
particular mqg. The lower a is, the earlier my would want to halt experimentation, and
the larger her welfare loss from over-experimentation. (@ is defined such that V (mq) = %)

For a <@, mg will not tolerate perpetual experimentation, so the (multiple) equilibria
feature finite experimentation. In this example, as 7 is increasing, every tg€[0,7(0)]
is an equilibrium stopping time. This range includes myg’s ideal stopping time, as well
as extremes—O0 and 7(0)—that yield % Thus mq’s welfare loss can range from 0 to
maxp Vp(mg) — % For low a, maxp Vip(mg) is low, so the maximal welfare loss is lower
as well. Finally, for a<a, 7(t)=t, and nothing prevents mg from obtaining her optimal
outcome by stopping right away. Thus, the welfare gap in the worst equilibrium is highest
for intermediate values of a.

3.4. Public news

Finally, in a minor extension of the baseline model, we show that the organization can
have a perverse response to information: it can, paradoxically, experiment more in the
face of bad news. To see why, suppose that, at time 0, a preliminary test of the risky policy
generates a binary public signal o €{0,1}, where 1> P[oc=1|G]|> P[oc=1|B]>0. Agents
enter or exit in response, and the organization decides whether to continue experimenting.
Thereafter the game continues as in the baseline model.

Proposition 2. If there are public news at time 0, there exist parameters for which
the organization stops experimenting at a finite time after seeing o =1, but never stops
after o =0—and, as a result, uses the risky policy more in expectation when it is bad
than when it is good.

The intuition is simple: though a positive signal encourages experimentation, it also
attracts skeptics who now favor the risky policy slightly over their outside option, but
still rank the safe policy as the best choice. The latter effect dominates if f is high
in a left-neighborhood of the initial marginal member, . In that case, a measure of
success can paradoxically lead the organization to turn away from the risky strategies

17. Here s=1.725, h=1, A=~=6, and f(:r:)oca%2 for all x>x¢ with g small, which guarantees
that p¢(m¢) is constant, 7 is increasing, and Proposition 3.(iii) applies.
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that brought that very success. A salient version of this phenomenon is when the success
of an innovative company invites an acquisition by a parent corporation that, not having
fully understood what it bought, then begins to meddle in the company’s affairs and
dilutes its strategy.'®

4. EXTENSIONS

In this Section, we extend our model to allow for heterogeneous payoffs across agents,
as well as for continuous intensity of membership. Further extensions, discussed in the
Conclusion, are relegated to Appendix B.

4.1. Heterogeneous outcomes

The baseline model concerns groups and organizations that take action and distribute
payoffs collectively. A related but distinct situation is when decisions are collective but
payoffs are ex post heterogeneous. For example, agents may have hidden types: some
may be “winners”, destined to reap the eventual benefits from the risky policy if it
is used, and others may be “losers”, who will get nothing—but these types are only
learned through experimentation. This setup, considered by Strulovici (2010), is a natural
model of political or economic reforms: for example, when switching from capitalism to
communism or from protectionism to free trade, citizens expect that some will benefit
and others will suffer, but cannot predict who ex ante.

To adapt our model to this case, we now assume a population divided into 2K +1
groups, each with unit mass, for some K €N. As before, individual agents can enter
or leave the organization, the outside option pays a, and the safe policy pays s. But
instead of the risky policy being good or bad for all agents, it is now either good or bad
for each group i (9;=G,B). Types are independent across groups; success realizations
are independent across groups, but common within each group. That is, if group ¢
is a “winner” from the risky policy then, while this policy is being used, the group
experiences successes at rate A, with each giving a lump sum h to all group-7 agents in
the organization. These assumptions mean that groups do not learn from each other but
learning is perfectly shared within groups.!?

The population of each group 4 is distributed according to a (common) density f
with support [0,1]. An agent’s position now represents prior beliefs as follows: an agent
x€(0,1] in group ¢ believes that ¥; =G with probability = for each j. (What matters
is that x believes ©¥; =G with probability x; agents’ beliefs about other groups matter
little.) We say group i is a “sure winner” if it has experienced a success.

An equilibrium can be described by a set of stopping states T CR x Ny, where (¢,k) €
T means the organization switches to the safe policy at time ¢ if there are k sure-
winner groups at that time. We say there is perpetual experimentation if 7 =0, i.e.,
experimentation never stops under any circumstances. Of course, experimentation must
go on forever in some histories: for instance, if k> K41, a majority of sure winners will
force experimentation on all other agents.

18. For example, Pixar’s success with boldly creative movies led to an acquisition by Disney, which
then pressured Pixar to pivot to a “safer” strategy focused on sequels and franchises (Orr, 2017).

19. An alternative way of modeling heterogeneous payoffs would give all individual agents
independent types and successes, so the agent can only learn from herself, if she is a member. The
results in that case track more closely with the no re-entry version of the model covered in Appendix B.
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This model reduces to our baseline model when K =0. It instead coincides with
Strulovici (2010) when a=0 and the distribution of priors is degenerate with z=pq for
all agents. A central result of that paper is that, for large K, the stopping time is finite,
and approximately such that the unsure voters’ posterior is 2—in other words, fears of
loss of control completely discourage experimenting for option value. Proposition 3 shows
that adding heterogeneous beliefs and exit to Strulovici’s model can dramatically change

its results, making over-experimentation at least as likely as in our baseline model.

Proposition 3. Perpetual experimentation is an equilibrium (and the only equilib-
rium) for the exact same parameter values as in our baseline model.

The logic behind the result is as follows. Because some agents from each group always
choose to remain and experiment, it is always possible for outsiders to learn about their
group’s type. Pessimists then leave when their own-group posteriors cross 2, as in the
baseline model. And, if perpetual experimentation is expected, any agent’s continuation
value V (y) from experimentation is exactly the same as in the baseline model. The prior
of the marginal and pivotal agents, y; and mg, is the same as in the baseline model
if there are no sure winners, i.e., in state (¢,0). When there are sure winners, all agents
from those groups join and support the risky policy forever, pushing the beliefs of the
median member upward. Thus the case (¢,0) is the tightest, and the conditions for the
baseline model, relevant for that case, also guarantee that experimentation will continue
with any number of sure winners. The uniqueness result follows from a more involved
version of the argument for Proposition 1, unraveling from the case of K +1 sure-winner
groups.

Even if the conditions for perpetual experimentation do not hold, the existence of sure
winners can shift the balance of power further in favor of experimentation, as optimists
can join forces with sure winners. For instance, in any history with even one sure-winner
group, experimentation will never stop after t*:%ln((QK —1)%), assuming a non-
increasing f. After this time, the sure-winner group will forever outnumber the remaining
members from all unsure groups. Thus, if V(p¢(m¢))> = for all t<t*, there is infinite
experimentation with high probability (that is, as long as any winners are revealed before
t*). In particular, there can be infinite experimentation with high probability even if the
support of f is bounded away from 1, unlike in the baseline model.

4.2.  Continuous membership and tradable shares

Our baseline model highlights the effects of selection on experimentation under three
important assumptions: membership is binary; the organization’s size is flexible; and
there are no property rights over the organization’s future payoffs. These assumptions
are appropriate for modeling political parties, social movements, or even firms in which
the members with de facto influence over decision-making are its employees (e.g., a
close-knit start-up).

In this section we present a variant of the model more applicable to a publicly-traded
firm that is controlled by its shareholders. This model differs from the one in Section 2
in three respects. First, the “intensity” of membership is adjustable: agents may have
ownership stakes of varying size. Second, entering or leaving the organization involves
trading shares, and may entail capital gains and losses. Third, the size of the firm’s
operations (i.e., how much capital or labor it employs, how large its payoffs) is not a
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direct result of entry and exit, as investors trading on the secondary market cannot create
or destroy shares.

We assume that voting power is proportional to stakes, so experimentation continues
if a share-weighted majority desires it. To make the problem non-trivial, we assume
that the agents are risk-averse, with CRRA utility functions.?? To isolate the effects of
continuous membership, we start with the assumption that the size of the firm is fixed.

The analysis yields two insights. First, continuous membership introduces another
avenue for self-selection: even among those who own shares, more optimistic members
want a larger stake. This effect intensifies as bad news arrive. Thus, the pivotal agent may
become ex ante more optimistic over time even when the size of the firm is fixed, which
could not happen in the baseline model. Second, selection forces are not strong enough
in this setting to support perpetual experimentation. Paradoxically, this is true even if
the firm’s size is flexible as in the baseline model. The reason is that a success generates
large capital gains in addition to the initial lump-sum payoff. This is an irreducible risky
payoff which, in the limit, cannot be held by a vanishing share of the population.

In Appendix B, we show that perpetual experimentation is still possible if membership
is continuous and agents are risk-averse, but members can enter and exit for free and
are entitled only to current flow payoffs, as in the baseline model. In that case, there is,
if anything, more selection than in the baseline model, due to selection on the intensive
margin. The takeaway is that, while continuous membership gives even more power to
optimists, capital markets have a corrective effect on selection forces, and may curb
excessive experimentation.

The model is as follows. There is a firm, as before, and a continuum of agents
distributed on [0,1] with density f. The firm’s ownership is split into a unit mass of
shares. There is a homogeneous good which can be consumed or used as capital. The
firm owns a stock & of capital, and chooses at each time between a risky policy and a
safe policy. Given t’{lis stock of capital, the safe policy generates a constant return of s.
If the risky policy is good, it generates successes of size h at rate A\, where g=MAh. If it
is bad, it never succeeds. (We are assuming that the firm’s size—the amount of capital
employed—is fixed. With a generic capital stock k, successes under the risky policy would
pay %Yh and the safe policy would pay ]%Ys) These payoffs are distributed in proportion
to shares. To simplify the analysis, we assume that, after the first success, the firm can
offer its owners a constant flow payoff g rather than a stream of Poisson lump sums, e.g.,
by contracting with a risk-neutral insurer. (Without this assumption, the post-success
share price would fluctuate due to wealth effects.)

Each agent starts with an endowment Wy of the good.?! An agent who consumes

—0
at a rate ¢ obtains a flow utility u(c):%, where 0 €(0,1] is the agents’ relative risk

aversion.?? Agents can lend or borrow the good at an interest rate v, the same as their
discount factor (possibly to or from unmodeled agents).?* Agents can also buy or sell

20. Risk-neutrality leads to implausible results: the most optimistic agent would buy the entire firm.
However, adding slight risk aversion to our baseline model would not qualitatively change the results,
so it is informative to compare the results from Section 2 with the ones from this section.

21. Or we could assume that each agent starts with an endowment W’ and one share, and let
Wo=W'+po.

22. In particular, we cover the case of # >0 small, which approximates risk neutrality, and the case
0=1 of logarithmic preferences. The case 6>1 presents some technical differences but yields similar
results.

23. Note that if an agent could pull out her share of the firm’s capital and consume a constant flow
from it by lending, this would yield a consumption stream of size a.
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shares in a secondary market. Let ps be the equilibrium price of a share, and let ¢:(z),
ct(x), Wi(x) be the demand for shares, consumption, and wealth of an agent with prior
x, all at time ¢, under the assumption that the risky policy has been used until then with
no success. Let ﬁ:% be the equilibrium share price after a success, and p :% the price
after a switch to the safe policy. Let ¢t (x;succ) be z’s (constant) consumption level after
a success that occurred at time ¢.

An equilibrium is given by functions (q¢(z),ct(x),ct(a;suce), We(x),p) and a set T of
stopping times such that the agents’ consumption paths and share demands are utility-
maximizing given the price path, policy path, and budget constraints; the market for
shares clears, that is, fol gt(x) f(z)dz=1 for all ¢; and a majority at time ¢ weakly prefers
to switch to the safe policy if and only if ¢ is a stopping time.

Proposition 4 provides a partial equilibrium characterization for this model.

Proposition 4.

(i) There is no equilibrium with perpetual experimentation.
(ii) In any equilibrium, ¢¢(z) is weakly increasing in z for all ¢.
(ii) Moreover, if =1, then g;(x) is MLRP-increasing in ¢, .

Part (ii) of Proposition 4 shows that optimists select into the organization, and
part (iii) shows that this effect intensifies as time passes, in the case of logarithmic
preferences.?* This happens even though the firm is not shrinking operations as time
passes to accommodate the shrinking number of optimists, as in the baseline model;
instead, it is purely the result of selection on the intensive margin. An intuition is that
share demands scale with each agent’s posterior belief, pt(x), and more optimistic agents’

x
ey

Yet, per part (i) of Proposition 4, perpetual experimentation is impossible in this
model: selection at the intensive margin has limits. A partial explanation is that, because
the firm’s size is constant, the per capita share demands of ex post optimists must increase
very quickly over time if they are to retain control forever. More precisely, at each time
t, a population mass of approximate size e~ must hold a majority of all shares. Due to
risk aversion, even optimists have diminishing returns from holding so many shares, as
additional shares only pay off when these agents are already rich. Then the optimists’
share demands can only be this high if shares are so cheap that less optimistic agents
also want to hold some—and they then become the majority.

We might wonder, then, what happens if the firm did scale down in response to news
as in Section 2. Formally, suppose that the firm could employ any capital stock k < %, and

beliefs are more resistant to bad news, that is, is increasing in ¢ for z>x’.

it chose, at time ¢, to employ only a stock 0 <kt <2 and return the rest to shareholders,
with the intention of recapturing it (e.g., with a public offering) after a success or switch
to the safe policy. Naively, we might think that if k; decreases quickly enough, perpetual
experimentation might result, as the total amount of risky payoffs to be held by each
optimistic player could be kept bounded. But this intuition is incorrect.

24. The logic is the same for all <1, but in the general case, the path of share demands is
complex due to income effects: optimists want more shares proportional to their wealth, but they also
over-consume in anticipation of a success, reducing their wealth in the long run.
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Corollary 2. For any path of the firm’s capital stock (kt)¢ such that ki TO, there
oo

is no equilibrium with perpetual experimentation.

The reason is that, while the payoff generated by the first success may shrink, the
fact remains that after a success, the firm would bounce back to full size, and the
value of its shares would shoot up. Just these capital gains are enough to sustain the
logic of Proposition 4.(i): the key is that voting power is tied to ownership not just of
flow payoffs but also future payoffs. In contrast, in an organization run by members
rather than owners, membership only entails exposure to current payoffs, and perpetual
experimentation is possible even with continuous membership. (See Proposition 15 in
Appendix B.)

Proposition 4.(i) can also be overturned if the population of agents is assumed to
grow exponentially, at rate at least A, over time. (That way, the total population of ex
post optimists remains stable in the long run.) This assumption may plausibly model
the growth phase of startups, in which they are continuously advertising and fundraising
from broader pools of investors.

5. CONCLUSION

In this paper we have laid out a theory of learning and decision-making in organizations
with endogenous membership. The most general principle emerging from our analysis
is that self-selection of agents dampens and may even reverse the effect of news on the
organization’s collective beliefs, as well as its policy. The co-determination of policy and
membership can induce path-dependence: firms in the same sector, or political parties
with similar goals, may adopt different approaches which attract sets of members with
diverging beliefs, giving rise to what may be seen as heterogeneous cultures. Culture thus
defined may cause performance differences, and it may be persistent: unlike individual
agents, two organizations that differ in their collective priors may fail to converge towards
one another as information arrives.

As we have seen, the effects of self-selection are more severe the more feasible it is to
exit. Capture by experimenters becomes even easier if ex post payoffs are heterogeneous,
as optimists and sure winners can join forces. And if membership is a continuous choice,
further selection occurs at the intensive margin. However, capture by a minority becomes
more difficult when the controlling members are owners who must accept exposure to all
future payoffs, as in the case of publicly traded firms.

In Appendix B, we show that our results are robust to several modifications of the
model. Briefly, the analysis extends in straightforward fashion to more general voting
rules, with supermajority requirements making perpetual experimentation even more
likely. Results are similar if good news are imperfectly informative, i.e., if the bad risky
policy also produces successes at a positive but lower rate. That case also yields an
analogous result to Proposition 2: a streak of good news can paradoxically cause the
risky policy to be abandoned. Perpetual experimentation can also obtain in a model of
bad news—though this is less surprising, as even a single agent may want to experiment
forever in a bad news environment. Our results also do not qualitatively change if
the organization’s payoffs, or its learning rate, are size-dependent—e.g., if there are
(dis)economies of scale—or if agents differ in their valuations of the risky policy’s output
rather than their priors. If quitters cannot reenter, perpetual experimentation is still the
equilibrium outcome, albeit for a smaller range of parameters.
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Still other important extensions lie beyond the scope of the paper. For instance,
organizations often choose between multiple risky policies. The same forces in our model
may cause such an organization to switch too infrequently, or never, from an unsuccessful
policy to an alternative, where a single agent would switch frequently to more promising
policies. The general point, then, is more about rigidity than over-experimentation per se.
Indeed, some famous examples of rigid decision-making are firms such as Blockbuster or
Xerox that kept doubling down on an apparently “safe” policy that became increasingly
unviable.??

Organizations also often compete with each other. As a result, the population they
draw members from is also selected to be pessimistic about what other organizations are
doing. When the strategies of competing organizations are in opposition, beliefs within
an organization will be even more skewed towards optimism.

Finally, power is often in the hands of leaders and managers, even when they represent
the interests of members. Such leaders ought to be cognizant of how success might attract
“bandwagoners”, and how a period of decline may render the organization increasingly
sclerotic. The same dynamics, of course, affect the leaders’ own ability to stay in power.
An important question is under what conditions a leader would have incentives to
encourage selection-induced inertia (as exemplified by the Curley effect) or to try and
limit it.

Relatedly, we may ask how an organization could be designed to limit selection and
policy inertia. To counteract inertia directly, supermajority rules should be avoided. On
the contrary, it may be desirable to give greater weight to minorities in favor of policy
changes. Alternatively, the organization could stabilize the voter base by making exit
costly (e.g., with back-loaded pay, coercion, or by barring reentry), insulating (some)
agents’ payoffs from the outcome of its policy, or granting more voting power to senior
members. One takeaway of Section 4.2 is that ownership by shareholders would also help
curb selection effects, relative to a cooperative structure.

A. APPENDIX

We begin with a few preliminaries regarding the evolution of the agents’ beliefs, their
quitting times, and the shape of the value functions V(y) and Vp(y).

Lemma 1. Let t*(y) denote the time it takes for an agent’s posterior belief to go from

y to z under unsuccessful experimentation. In particular, let t(y)=t9 (y) be the time it
will take for an agent with current belief y to quit. Then

1 11—z vy 1 g—a y
z . — [ —
t (y)—Aln< z 1—y> Hy) )\ln< a 1—2/)

25. Steve Jobs famously blamed the decline of Xerox on selection forces: namely, its focus on the
copier market led to “product people”, those with the sensibility to create new products, being “driven
out of decision-making forums” and replaced by “toner-heads” who saw no need for innovation, even as
the early PC market was booming (Tweedie, 2014).
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Proof. of Lemma 1 Solving pt(y) = % =7 for t, we obtain e~ () = = 1_73" or,
equivalently, t*(y) = %ln(l%% . The rest are special cases. ||

Lemma 2. The value functions Vp(y), V(y) satisfy the following equations:

Vr(y)=y {ze(A+7)T975} Jr(lfy)ef'yTs ifT<t(y). (A2)
|9 9T~ Ny) (P29 9T (T
Vir(4)) =
T(y) y|:’y /\+rye —|—< 5 +)\+7>6 +
+(1-y) {36_7t(y)+5;a€_w} ifT>t(y). (A3)
Vi) =y H _ ig,i(m)t@] +(1_y)%€*7t(y). (A.4)

Proof. of Lemma 2 If T <t(y), the agent never leaves the organization. Then

Vir(y)=y [/Tgevtdt—l—/;o (67/\T5+ (1 —ef)‘T> g) e Mt
0

The first term is the agent’s utility conditional on the risky policy being good. Between 0
and T, she collects an expected flow payoff g. At time T, there is a probability e T that
no successes have occurred, in which case the safe policy is chosen and the agent receives
s thereafter. With probability 1—e T a success has occurred, so the risky policy is
retained forever and the agent receives g. The second term is the agent’s utility in the
bad state of the world: a flow payoff s after the switch to the safe policy. Simplifying, we
obtain equation (A.2).
If T>t(y), the agent leaves before the switch to the safe policy. Then

t(y) T
Vr(y)=y [/ gef'ytdt+/ (ef)‘taJr (1 fef)‘t) g) e Mdt+
0 t(y)
T

/ (€_>\T8+ (1—6_)\T> g) e_”’tdt} +(1—y) l/ ae‘”tdt-i-/ Se_vtdt] .
T t(y) T

The only difference is that, between t(y) and T, the agent receives a if there have been
no successes. Simplifying yields equation (A.3). Finally, we can obtain equation (A.4) by
taking the limit of Vp(y) as T—o0. ||

o0
+(1 —y)/ setdt.
T

Lemma 3. (i) Vp(y) and V(y) are continuous and strictly increasing in vy, and
differentiable at all T #t(y).

(z’i)VMy):% and &’gigﬂ(y) T_Ozmax{yg,a}fery@.

(#ii) Letting T* = argmazpVp(y), T—Vp(y) is strictly increasing for T €[0,T*] and
strictly decreasing for T >T*.

(w)If V(y)> %, then Vp(y) > = for all T>0.
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Proof. of Lemma 3 The continuity and differentiability of Vip(y), V(y) are immediate
consequences of Lemma 2. That these functions are increasing in y can be proved directly,
by differentiating equations (A.2)—(A.4) with respect to y, but it is also conceptually
obvious, as an agent with a higher prior can copy the behavior of one with a lower prior
and still obtain a higher expected payoff.

For part (ii), that Vo(y):% follows from the definition. For the rest of part (ii),

note that if yg>a then t(y)>0, s a*'gigﬂ() Nt s+y=———= Mg=s) 75)

differentiating equation (A.2) with respect to T at T=0. If yg<a then t(y) <0, and
0+ Vr(y)

can be obtained by

=a—s —i—yw follows analogously from equation (A.3). Note in particular

04 Vr ()
+VT\Y
that 9T

‘Tfo is strictly increasing in y.
For part (iiij, we will relate the values of Vip(y) for different values of T and y as

follows. Fix Ty >0 and € >0. Then

Vig+e(y) =V (g)=e 710 (ye 0 1) (Ve(pTo (¥) - j) :

since Vp 1¢(y) and Vr, (y) only differ in the event that T is reached with no successes—
an event with probability (ye_ATO +1—y)—and, in this scenario, they yield the respective
continuation values Ve(pr,(y)) and %, starting from Ty. Taking the limit as e—0,

oVr(y)
oT

oVr(pr, ()
oT

=e M0 (ye M0 +1—y)
T=Tp

T=0

M ‘ is positive

This implies that B%ngy) ‘T . is positive (negative) whenever
=10

(negative). In addition, we know that T — pr, (y) is decreasing by equatlon (2.1), and

6VT(Z) VT(pTO (y)) ‘
T T

0
Z is increasing by part (i). Moreover, is negative for large
= g by part (i) :0 g g

enough Ty, as pr,(y) tends to zero for all y<1. Thus %Tip(iy)’TfT is either always

negative or changes signs once from positive to negative. In the first case, T*=0. In the
3VT(y)

second, T™ is the unique solution to . =0. Either way, Vir(y) is single-peaked

in T'. Intuitively, the higher is T, the more pessnmstlc the agent is at the stopping time,
and the less she wants to prolong experimentation at the margin.

Hence, it 7% >0, Vp(y) >V (y) = % for T € (0,T*] because T'+— Vp(y) is increasing over
this region. For T'>T*, Vp(y) >limp_,o Vr(y) =V (y) because T+ Vp(z) is decreasing
over this region. Then, if V(y)> %, Vr(y) >% for T>T*, and of course T >0, so part
(iv) follows. ||

Proof. of Proposition 1 Suppose that all pivotal agents expect perpetual experimenta-
tion in equilibrium (7 =0). Then, when m; is pivotal, she expects a payoff V (pi(my))
from continuing to experiment and a payoff 2 from stopping. If V(pi(m¢))> 5 for all
t, then it is weakly optimal for all pivotal agents to continue, and hence T = (Z) is an
equilibrium. Conversely, if V (ps(m¢)) <% for some ¢, T =0 cannot be an equilibrium as
my¢ would deviate to the safe policy.

As for the uniqueness, if V(ps(my))> i for all ¢ with equality for some ¢, we can
also construct an equilibrium with stopping at ¢ and nowhere else. It is left to prove
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that, if V(pt(mt))>% for all ¢, then there are no other equilibria besides perpetual

experimentation. Suppose for the sake of contradiction that there is an equilibrium 7 # 0.
Choose any t € T, and let t/ =inf{t € T :# >t} be the “next” stopping time after t. If ' =

then m; would receive V(p¢(my)) from continuing and % from stopping, so she strictly
prefers to continue, a contradiction. If ¢/ >t is finite, we similarly have a contradiction
because, by Lemma 3.(iv), V(pe(ms))>2 implies Vir_y(pe(my))> 2. Finally, if ¢'=t,
then my’s payoffs from continuing and stopping coincide. However, by Lemma 3.(iv),
V(pt(m¢))> = implies Ve(p¢(m¢))> = for all €>0, whence my must choose to continue

by Condition (ii), a contradiction. ||

Proof. of Proposition 2 We prove each inequality in two steps. First, we note that the
median posterior belief, p¢(m¢), is uniformly bounded below for all ¢, with different
bounds depending on the density f. For any f with full support, ps(my) > pt(yt):g

When f is uniform, p(ms)\ gzﬁ, as shown in the text. More generally, for any w>0,

1
if f(x)=fo(@x)=w+1)(1—2)“ then pt(mt)\m, where n=2"«+1. This is a
consequence of the following claim:

Claim 1. Suppose that the distribution of priors is f,, for some w>0. Then

a+(1-n)(g—a)e
n(g—a)+a+(1—n)(g—a)e At

pe(me) =

Proof. of Claim 1 As shown in the text, y;= W. The median m; is such that

Qf%tfw Ydz = f fuw(x)dz, so that 2(1—my)¥ = (1—y)“ L Hence 1 —my=n(1—y),
which 1mphes that

a _a+(1-n)(g—a)e

at(g—a)e= a4+ (g—a)e M

m=1-n+ny:=1-n+n

Substituting this expression into equation (2.1) yields the result. ||

It is then immediate that ps(my) \,m when f=f,.

Second, we observe that, since V(y) is strictly increasing and continuous in y (by
Lemma 3.(i)), we have inf;>qV (pt(m¢))=V (inf;>gpt(me)). Hence, to arrive at the
bounds in the Proposition, it is enough to evaluate V' at the appropriate beliefs.

We begin with part (ii). To calculate V/ ( we combine the results of Lemma

=)

1 and Lemma 2. Substituting y= and e*/\t(y):n into equation (A.4), we

a
. ng+(1-n)a
obtain

a

V( > 9_9=0 143 n(g—a)
ng+(1-n)a 779+1 n)a

a
{’y Aty ng+(1—mn)a~y
g 1+l a |:_ 1 ].:|
v

+n' X (g—a +=
( )779+(1—n)a Aty oy

il
A

Ui

~ng+(1-n)a

which, after rearranging and multiplying both sides by +, yields the equation from part
(ii). For part (i), calculating V' (g+a) is a special case of part (ii), with w=0 and hence
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77:%. For part (iii), we substitute y:% and t(y)=0 into equation (A.4) to obtain the
value of V (%)

The only thing left to do is show that part (i) holds for all non-decreasing f, not
just when f is uniform. Take f to be any non-decreasing density. Let m; denote the
median at time ¢ under f, and let m; denote the median at time ¢ under the uniform

density. We will show that infypg () =infype(mye) = gi—aa, which of course implies that
infy V (pe(my)) =inf V (pe(me)), as desired. To do this, we will need three auxiliary results.

Lemma 4. Suppose that f MLRP-dominates f, i.e., % s mon-decreasing in x. Let

my¢ and my be the median members at t under each respective density. Then my >my for
all t.

Proof. of Lemma 4 Note that y;, the prior of the indifferent agent at tlme t is
independent of the distribution of priors. By definition, fyT L f(x)de= fmtf
Suppose that my <m; for some t. This is equivalent to

tf(x) _ i s = 1L<x> x)dx
f(z)

Since @) 8 weakly increasing,

™ f(m) @ e [ s [0
/yt f(m»f(‘”)d”/yt Fa) ! 1 >/,m Fa) ! 1 >/,m F(m

which is a contradiction. ||

Lemma 5. Suppose f is a mon-decreasing density, and f is the uniform density over
[0,1]. Then %:mz —1 as t—oo.

Proof. of Lemma 5 Let fOt—f(yt) and fi=f(1). Suppose f is continuous at 1. (If not,
redefine f(1) as Sup,co,1).f (), which does not alter r72;.) By the same logic as in Lemma

4, we have m¢ <m¢ <7, where 7 is the median corresponding to a density f such that
f( )=for for z€y;,my] and f(x)=f) for € [ry,1]. Then 17mt < 1 mt <1, so it is

enough to show that 1 mt —1.

By construction, because 7 is the median, we have fo; (my—yt)= fi (1—=my), so my=

Jforye+ ] Jor(1—ye) ye+1 _1-y
%:)t:‘fll T~hus 1—1hy ﬁ t5—= and 1—my=-3", we have

1t _  2for
T=me = foo+ i _ _
Since f is continuous at 1, f( )= f(1) as x — 1. Then, as t — o0, yt = 1, for=f(ys) —

f1 and %7%; —=1. |

and, because m;=

Lemma 6. Let x¢, T+ be two time-indezed sequences of agents such that vy <Zy for all

t and xy—1 as t—o0. Ifl gtgxt;—ﬂ
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Proof. of Lemma 6 Applying equation (2.1), we obtain

pe(Z4) _ Fre— M mte_kt—i—(l —x¢) _ Ty xt—l—(l—xt)e)‘t
pe(Tt) ite_At—&—(l—it) xpe— A Tt a?t—i—(l—a?t)e)‘t ’
Since x¢— 1 and T+ >x¢ for all t, £; — 1, whence % — 1. In addition, since %:’% —1,

(1—x¢)eM?
(1—¢)ert

1_ At 1_ A\t 1_ A\t
Lemin] 2 Ume)et | o (Qmeget | Joe (et |y
T (1=ap)eM | 7~ T+ (1—a¢)eM Tt

— 1. The result then follows, as

|
Lemma 5 shows that tzz — 1, while Lemma 4 shows that m;>m; for all ¢. And,
of course, m¢—1 as t—o00. Then Lemma 6 applies to the sequences m: and mt,

guaranteeing that 2 tEmt; —1 and hence pi(ms) — =%

In particular, inf;p¢(my) < ng—a

concluding

g+a
Since p¢(my) >pr(my) for all t by Lemma 4, infypg () >infype(my) =
the proof. ||

(l
gta’

Proof. of Corollary 1 This follows from Proposition 2.(iii): if f has full support and

a€<55>\],then
1+gg X

. a a(g—a) A alg—s) A
f > - = > .
'ygrzloV(pt(mt))_'yV<g> a+ 7 ’H)\_a—l— p 7+)\>8

Proof. of Proposition 1 Lemma 4 implies that an MLRP-increase in f increases
infy V(pe(my)). An increase in vy decreases vV (y) by reducing the agent’s option value
from experimentation, while leaving s unchanged. We can verify this by differentiating
equation (A.4) with respect to :

oV —a)\ _ _
W y(g— a))\l e (A+v)t(y)t(y)_m€ M+NUW) — (1 —y)ae " Wg(y)

1) p(y) — YIZDX ~Oei)etw) <

_ g
~wal 1) ()2

where we have used that e_At(y)zg“alyy by Lemma 1. An increase in A with a
proportional decrease in h (so g remains unchanged) is formally equivalent to a decrease
in v up to a relabeling of the time variable, so it has the same effects.

An increase in a increases V(y) for each y (this can be proved by differentiating
equation (A.4)), and also increases y¢, and hence my, for each t. The effect of a change

in s is straightforward since it has no impact on V(y). ||

Proof. of Proposition 8 We first note some properties of 7. Let ¢ be the current time
and t* be the time at which m¢ would choose to stop experimenting if she had complete
control over the policy. In other words, t* =argmaxVp_¢(z).

If t*=t then, by Lemma 3, VT_t(:c)<% for all T>t, and 7(¢t)=t. If t*>¢ and

Vipe(myt)) < %, then, by the same lemma, Vip_;(pt(my¢)) crosses % only once, at a value
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of T>t* equal to 7(t). Finally, if t* >t and V(ps(my)) > %, then Lemma 3 implies that
Vi _¢(pe(my)) >% for all T>t, so 7(t)=oo0.

Next, we argue that 7 is continuous. If 7(tg) € (tg,00) then, for ¢ in a neighborhood of
to, 7(t) is defined by the condition V7. (;)_(pe(me)) = %, where p¢(my) is differentiable in
t, and Vp(z) is differentiable in (T,x) at (T,z)=(7(t),pt(m¢)) (by Lemma 2) and strictly
decreasing in T' (by Lemma 3), so the continuity of 7 follows from the Implicit Function
Theorem. The case 7(tg) =tg is similar. 7 is also continuous at co if we take the one-point
compactification topology on [0,00].

Consider a pure strategy equilibrium with finite experimentation, 7 #{. Let tg=inf 7T
be the stopping time on the equilibrium path. Clearly tg <7(0), as otherwise mg would
switch to the safe policy at time 0.

Suppose tgeT. Consider what happens at time tg if my, deviates and continues
experimenting. Suppose first that 7(tg) € (tg,00). Let t; =inf(7 N(tg,00)) be the time
when experimentation stops in this continuation. We claim that t; must equal 7(¢g). To
see why, suppose that ¢; >7(tp). In this case, for all ¢ >0 sufficiently small, mg,+. would
strictly prefer to stop experimenting, which contradicts the assumption that t; > 7(¢g) >
to was the first stopping time after 9. On the other hand, if ¢; <7(¢g), then my, would
strictly prefer to deviate from the equilibrium path and not stop. (If t; =tg, my, would
still deviate and not stop by Condition (ii).)

Next, suppose that 7(tg) =00, that is, my¢, weakly prefers to continue experimenting
regardless of the continuation. Then it must be that t; =00 and V (pg, (my,)) and
in this case we must still have t; =7(tg).

Now suppose that 7(tg) =tg, that is, my, weakly prefers to stop regardless of the
continuation. In this case, the implied sequence of points is (tg,tg,...). This does not
fully describe the equilibrium, as it does not specify what happens conditional on not
stopping experimentation by tg, but still provides enough information to characterize
the equilibrium path fully, as in any equilibrium experimentation must stop at tg.

Finally, if tg¢ 7, then must be a sequence (t¥);, CT such that t*\ to. Applying the
previous argument to m,.’s stopping decision, we conclude that T(tk) <kl (else myk
would deviate). Taking the limit yields 7(¢g) =tg, so my, stops no matter the continuation
by Condition (ii), i.e., tg €T, a contradiction.

We can iterate this argument to show that ¢t =7(tg) € T is the second stopping time,
7(t1) €T is the third, and so on.

Next, we show that if 7 is increasing and t€[0,7(0)], then 7 =(¢t,7(t),7(7(t)),...)
constitutes an equilibrium. Our construction already shows that my, is indifferent about
switching to the safe policy at time t, =7"(ty). What is left is to show that for t¢T,
my weakly prefers to continue experimenting. Fix t€ (ty,tn+1). Since t>t, and 7 is
increasing, 7(t) > 7(tn) =tn+1. Hence the definition of 7(¢) and the fact that T Vp(z)

is single-peaked by Lemma 3 imply that Vi, —¢(pt(me)) > %, as we wanted. This proves

_ S
_57

part (iii).

Next, we show that even if 7 is not increasing, this construction yields an equilibrium
for at least one value of t €[0,7(0)]. Note that our construction fails if and only if there is
t€ (tg,tg11) for which 7(t) <tp41. Motivated by this, we say ¢ is valid if 7(¢) =infy >, 7(t'),
and say ¢ is n-valid if ¢,7(t),..., 7" (t) are all valid. Let Ag=[0,7(0)] and, for n>1,
let Ap={t€[0,7(0)]:¢t is n-valid}.

Suppose that 7(t) >t and 7(t)<oo for all t. Clearly, A, DAy, for all n, and the
continuity of 7 implies that A,, is closed for all n. In addition, A,, must be non-empty for
all n by the following argument. Take tg=t and define a sequence {tg,t_1,t_2,...,t_1}
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by t_;j=max{7 (t_;41)} for i<—1, and t_,€[0,7(0)]. By construction, t_j € Ap is
k-valid, and, because 7(t)<oo for all ¢, if we choose ¢ large enough, we can make
k arbitrarily large.26 Then A=N§° A, # @ by Cantor’s intersection theorem, and any
sequence (t,7(t),...) with t€ A yields an equilibrium. The same argument goes through
if 7(t) =00 for some values of ¢ but there are arbitrarily large ¢ for which 7(¢) <oo.

If 7(t)=t for some ¢, let t=min{t>0:7(t)=t}. If there is ¢>0 such that 7(t) >7 ()
for all t€ ({—e¢,7), then we can find a finite equilibrium sequence of stopping times by
setting tg=t and using the backward construction in the previous paragraph. If there is
no such e, then the previous argument works.?” The only difference is that, to show the
non-emptiness of A,, we take t—t instead of making ¢ arbitrarily large.

If 7(t)>t for all ¢ and there is  for which 7(t)=occ for all t>#, without loss of
generality, take # to be minimal (that is, let f=min{t>0:7(¢t) =co}). Then we can find a
finite sequence of stopping times compatible with equilibrium by taking to=t, assuming
that my, stops at ¢y and using the same backward construction. This finishes the proof of
part (ii). Finally, part (iv) is proved with the same logic as the uniqueness in Proposition
1. More generally, if 7(t) =00, then t¢ T for any equilibrium 7. ||

Proof. of Proposition 2 Let Plo=1|G]=7 and Plo=1|B]=x. By equation (2.1), the

indifferent agent after o =1 has prior z, = m < %, while the indifferent agent after
0=0 has prior x*:m > %.

Given any values of a, A, h, 7, choose s such that V(%) <%<V(iﬁ), and take

f as follows: f(x)=0 for z€[0,z4]; f(z:):%6 for z € (z«,z++¢€); and f(a:):m
for z €[z4+e¢,1], for €>0 small enough. (The essence of the construction is simply that
f takes high enough values within [z4,2*). Of course, it can be perturbed to make f

continuous.) Then, after bad news, the set of potential members during experimentation

is contained in [z*,1]. As f is uniform over this interval, the condition %<V(%)

guarantees perpetual experimentation by Proposition 2. After good news, the median
member is x«+e€, whose posterior is arbitrarily close to g for € small enough. Then the

condition V' (%) <% guarantees finite experimentation in equilibrium. Moreover, for e

small enough, y; crosses x*+¢ after an arbitrarily short time, after which no stopping
is possible, by the logic of Proposition 3.(iv). So the equilibrium stopping time after
o =1 must be arbitrarily close to 0, meaning that the time the risky policy is used for is
determined almost entirely by o, and hence negatively correlated with the state. ||

Proof. of Proposition 8 Let V(y), Vir(y), v+ denote the same functions as in the
baseline model. As for pivotal agents, note that if & groups have been revealed as
winners, there is a mass k of members always in favor of experimentation. Of the
remaining 2K +1—k groups, only agents with pi(x)>y; will be members at time
t. Then the pivotal agent, myy, satisfies (2K +1—k)[F(myy)—F(ys)| =k+ (2K +1—
k) [1 _F(mt,k)} . Clearly m¢ g =my from the baseline model, and my j, is strictly increasing
in k.

26. Since 7 is continuous, and 7(t)<oo for all ¢, the image of 7! restricted to the set [0,7(0)] is
compact and hence bounded for all I. Thus, for any ¢ larger than the supremum of this image, k>1.

27. If there is € >0 with the required property, then 77 1(f) is strictly lower than  and reaching
[0,7(0)] takes finitely many steps. If there is no such e, then 771(f)=% and there exists a sequence
converging to t.
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By the same logic as in Proposition 1, perpetual experimentation is an equilibrium
if and only if V (pt(my 1)) Z% for all ¢,k. Because V' and py(-) are increasing functions,
and my , is increasing in k, this holds if and only if V' (pt(my0)) 2% for all ¢, which is
the same condition from Proposition 1.

As for the uniqueness, if V(pt(mt))Z% for all ¢t with equality for some ¢, we can
obviously construct an equilibrium with stopping in state (¢,0) and nowhere else. The
opposite implication is more involved. Suppose that V(p(my)) > % for all ¢, and there is
an equilibrium 7 #0. As noted in the text, any (¢,k) € T must have k< K.

Suppose that there exists tg such that (t9,K)€T. Note that starting at (¢g,K),
if any additional group is revealed as a winner, experimentation is locked in forever
after, as there are K+1 sure-winner groups. There are two cases: either TN
{(t,K):t>1p} is empty, or not. In the first case, if my, g deviates and continues
experimentation, it will never stop. Then her equilibrium action contradicts the condition
V(pto (mig, 1)) >V (0t (mto))>%. In the second case, experimentation next stops, if
no more winner groups are revealed, at some time 1 >%p. Then my, k’s continuation
value from experimentation is a convex combination of V(ps,(my, )) (which she
receives conditional on another group succeeding for the first time before ¢;) and
Vii—to (Pto(myy k) (the complementary case). By Lemma 3, and because my, i >my,,

S

the condition V(py, (mi,)) > 2 implies that V(pto (meg, i), Ver—to (Pto (Meg, i) > = for all

t1>tg. Then my, g strictly prefers to experiment, a contradiction. (If ¢; =tg, Condition
(ii) applies.)

Thus there is no t for which (¢,K)€T, i.e., experimentation never stops after K
groups are revealed winners. But then the same argument applies to histories of the form
(t,K—1), etc. Repeating the argument leads to the conclusion 7=, a contradiction.

Proof. of Proposition 4 We first characterize the agents’ equilibrium share demands and
wealth and consumption paths given an expected path of prices (pt): and an expected
stopping time ¢y €[0,00].

An agent’s per-share gain after the risky policy first succeeds is h+p—p¢, if this
success occurs at time ¢. In addition, the instantaneous cost of holding a share through
time ¢, assuming no success, is yp;—pj: p; is the agent’s net capital gain, and yp; the
opportunity cost of not lending the funds invested in the share.

Let Q¢(r)=qi(z)(h+p—pi) be an agent z’s gain from success at time ¢, and § =
% the flow cost of increasing Q¢(z) by 1. Let V;(W,z) be the continuation utility
of an agent x starting at time ¢, if her wealth at time t is W and there have been no
successes, and let Uy(W,x) be the same but assuming a success has occurred. Then the
solution to the agent’s consumption and investment problem must satisfy the following

FOCs:
 Vi(Wila),)

0=t (ex(a)) - 2V (A.5)
0=~/ (e (z35ucC)) — aUt(Wt(?V;Qt(m)’x) (A.6)
02 () TV QUD1) o VD) (31 0 50) (47
D) _ ) esce)) — () (A8)

ot
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These FOCs, which follow from the Hamilton-Jacobi-Bellman equation for the agent’s
optimization problem, reflect the following tradeoffs. The agent must be indifferent at the
margin between consuming and saving at time ¢, if there has been no success (equation
A.5), and between consuming and saving, immediately after a success that occurred at
time ¢ (equation A.6).28 She must not want to buy any more shares at time ¢, and must
be indifferent at the margin between saving and buying shares at time ¢ if she buys
a positive amount (equation A.7). In addition, her (expected) consumption path must
satisfy the Euler equation (equation A.8).

Substituting equations (A.5) and (A.6) into equation (A.7), and using that u/(¢)=c?,
we obtain

Apt () (et (m3suce)) <&/ (ce () <= e (a;8ucC) > e (2) [APEECE)} ! , (A.9)

1
again with equality if Qy(z)>0. Relatedly, Q¢(z) >0 if and only if VZ%?) < {*pg—f“)} 7
We can characterize for the agent’s path of choices as follows. Suppose that the agent

1 . oh
is holding some shares at time ¢, so ¢;(x;succ) =c¢(x) [Apéit(x)} ?. Denote h:= 4t Using
that u/(c)=c?, and hence @'(ct(z))=—0¢(x), and substituting equation (A.9) into
equation (A.8) yields that

u (et (x;succ))

u! (et ()

=>ci(:r)=%[§t—>\pt(x)]=ct7§ (1— )\pgx)) (A.10)

Differentiating equation (A.9) with respect to ¢, substituting in equation (A.10) and

bér(x) = —il (cr(x)) = M () ( - 1) P

using the functional form of py(z) (in particular, apéigx) =—Mp(z)(1—pe(x))) yields

ét(x;succ):ét(a:)+é [pr(a)-&] = % [gt—xpt@)]% M -pa)) -]

:% [—A+gt—§t} —T}. (A.11)
The rate of change of ¢;(x;succ) is thus equal for all agents who are holding shares. An
intuition is that, while optimistic agents want to hold more shares over time, they also
consume more of their wealth in anticipation of a success, and these two effects cancel
out.

The agent must also satisfy the following budget constraints:

Wi (z) =AW (z) —cr(2) — Qe ()& (A12)
ct(wsuce) =yWi(z) +7Qi(x) (A.13)
Equation (A.12) is the agent’s budget constraint before a success, while equation (A.13)

reflects that the optimal consumption path after a success is constant. Combining these

28. Of course the agent must remain indifferent for all s>¢, but this condition simply leads to the
consumption path after a success being constant.
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two equations with equation (A.9),

— (Wi (@) = (14 6) (VWi () — er(2)) +cr(@)és (1 [Apt(ﬂ ) L (A

Equations (A.10) and (A.14) characterize the evolution of Wy(z) and ¢;(x) when share
demand is positive. Suppose now instead that @Q¢(x)=0. Plugging this into equation
(A.12), and ¢¢(x;suce) =yWi(x) into equation (A.8), we obtain

(YWi(x)) =y (v Wi (z) = et () (A.15)
@)y ([ et 10
c(@) === Ape( )<[th($)} 1>. (A.16)

We will now show the following:

Claim 2. Set 0<1. For all t, yWi(z)>c(z). If Qu(x)>0 for some t'>t, then
YWi(x) > ().

Proof.  Suppose that YWy (z) <ci(x) for some t. If the agent is not holding shares at ¢,
then, from equations (A.15) and (A.16), ¢ ( )>0 and hence YW/ (z) — ¢ (z) <y (yWi(z) —

ci(z)). If instead Q¢(x) >0, note that 1— y0 <X2¥ for any y#1 and <1, so

ol ) o

Then, from equations (A.10) and (A.14), (YWi(z) —ce(z)) < (v+E&)(YWi(z) —ce(x)) <
(Wi (x) —c¢(x)). By Gronwall’'s inequality, yWy (2) — ¢y (2) < (vWi(z) — ci(z)) e =)
for all ¢ >, which goes to —oo. Since W/ (z) <YW (z) —ci(x) by equation (A.12), Wy (x)
eventually becomes negative, a contradiction.

Next, suppose YWy (x) =c¢(x) for some t. If the agent is not holding shares at time ¢,
from equations (A.15) and (A.16), Wi(z) =c¢(z)' =0. If instead Q¢(x) >0, then Ap¢(z) >
&. Then YW/(x) <cj(x) by equation (A.14), so YWi(z) <ct(z) in a right-neighborhood
of ¢, leading to the same contradiction. Hence either yW;(z) > c(z) or yWy (z) =cp ()
for all ¢/ >t and the agent never holds shares after t. ||

Note that at the last time ¢(z) when an agent x ever holds shares, Apy(,) =& (). For
other times ¢ < t(x) when the agent starts or stops holding shares (Q¢(2) =0 but Qy (x) >0

Apt<x>] T _ AWi(x) Ape(x)
& &

i(2) >1. Hence >11is a

for ¢/ arbitrarily close to t), we must have [

necessary (but not sufficient) condition for  to hold shares. It then follows that ¢} (z) <0
for all ¢ <t(z): if the agent holds shares at ¢, then this follows from equation (A.10) since

Ap é( 2) > 1, and if not, it follows from equation (A.16) and Claim 2. Finally, note that
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equations (A.10), (A.14), (A.15) and (A.16) allow us to solve backwards for the agent’s
choices starting from ¢(z), given a value of Wy, (2).”

If 6=1, by analogous arguments, YW¢(x) =ct(x) and Q¢(x) >0 if and only if Aps(x) >
&t

We now prove part (i). Suppose there is an equilibrium with perpetual experi-

mentation. By equations (A.9) and (A.13), and the fact that c;(z) <cg(z) <yWy, we
1
have that for any = holding shares at time ¢, ygt(x)(h+p—pt) <yWy [Apéit(x)} ? . Letting

?:maxme[o’l} f(z), and bounding h+p— p; > h, it follows that

D=

1 1 1 _ a7 Il
h= / ge(w)hf ()< 200 / (pe(a)) Faw < 2200 / pr()dz.
0 gte 0 gta 0

1 — —
Note that pi(z)e <pi(x) because pi(z),0<1. Since fol Ie_mft_:_x de= (16_;—?\5)2 .

li;it)\t <2Xte= M for t away from 0, there is M >0 such that & < Me= 2% for all t away
from 0. In particular & —0, so p;—0.39 Because & and py(x) go to zero exponentially,
equations (A.10) and (A.16) imply that c;(z) N\ c(z) for some limit ¢(x)>0.

We will now show that optimists eventually lose control, i.e., ps(m¢) —0. Suppose
instead that pt(m¢) >p>0 for arbitrarily high ¢ (say, for a sequence (t,)n going to o).

AR NSt
Note that my > W and 1—m; < pj—l(lf)pe)e—ﬂ < a p1)76 for all t=ty,.

From equations (A.9), (A.10) and (A.16), cé(x)ﬁ#(&—)\pt(x)), with equality
when g¢(x) >0. Because & goes to zero exponentially, and p¢(x) goes to 1 exponentially

as t decreases, [;°& and fioo(l—pz(x))dz are finite. (Moreover, the latter integral is
uniformly bounded for all z,¢ such that p:(x)>p.) And of course cg(z) <yWy. Then
there is M’ such that ct(x)gM’e_%t for all x and ¢ such that p¢(x)>p. Then, for all
t=tn,

1 1 1
2/ eo() [)\pt(x)} ]lqt(x)>0f($)d$:/ ct(zsuce) Ly, (py>o0f(2)dz >

1
> / ()b f(@)d=""

me 2

Then there is M” >0 such that & <M"e 20+t fo1 all t=t,. Thus ’\pét(z) > /\‘f\?,et

1
for all x, t=t,, and YWi(x)+~vQ¢(x)=ci(z;succ) > cy(x) [1\/}%’} ?eM | whence Wy(z)>

29. This value can be normalized to 1 and at the end the solution can be scaled to satisfy Wo(x)=
Wy, since preferences are homothetic.
30. Otherwise, along a sequence of local maxima of p; converging to limsupp;, or a sequence going
monotonically to p; with p} going to zero, we must have limsup, & > 'Ylihmi% >0.
Y
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1
%{]\)ﬁ}g Me(z)—Qi(x), for all x, t=t,. Fixing an >0, there is M >0 such that

Wi(z) > MeM —Qy(x) for all z€[e,1—¢|, t=t,. Assume WLOG that t, >n for all n.

Then Wy, (z) — 00 a.s. in [¢,1—¢].3! Since this works for any e, W}, (z) —— o0 a.s.
n—00 n—00

in [0,1]. Finally, equation (A.12) then implies that there is = for whom W;(x) > Ce* for

all t, which contradicts the agent’s transversality constraint.3?

Thus, for any p, the fraction of shares held by agents with posterior at least p
eventually goes below % forever. By the same argument, for any p,z € (0,1), the fraction
held by agents with posterior at least p eventually dips under z forever. Using this result,
we will show that there cannot be a majority in favor of experimentation at all .

If a deviation to the safe policy happens at time ¢, each x then consumes
YW () +vqt(x) (% —pt) forever. Under perpetual experimentation, we bound the agent’s
continuation utility starting at ¢ as follows. The agent would be weakly better off
if she kept her equilibrium share demands (gqp(z))y>; but paid zero for them. If
so, the expected present value of her consumption stream in the continuation would
be Wi(z)+pi(x) [ e V=g (@) (h+p—pp)re =D di’ Her certainty equivalent is
lower, as she is risk-averse. Then, for any agent in favor of experimentation, and for any
t large enough that p; < %,

o) 3= <pi(o) /t eWWt>qt/<x>x<h+j)dt’.

Let Bt [0,1] be the set in favor of experimentation at time ¢. By assumption,
th qt(z) f(x )dmz% for all t. Then, for all ¢,

;g/}gtqt(m);yf(x)de/Bt [pt(x)/t e_(7+)‘)(t/_t)qt/(x)A (h—l—i)dt'] fz)dx <

< [Tl oo (@) (A (1+2) tayta|

where in the last step we have used that py(z)>ps(z)e =1 for ¢ >t. Clearly this
inequality cannot hold for all ¢ if fo pp(x)qp () f(x)dx goes to 0 as t' — oo. But of course

fO qp(x) f(z)dr=1, and py () goes to zero pointwise as t' — oo. For any p, z, take ¢ such
that f 2)sp (@ )f(x)dm<z for all ¢ >t. Then

1

1 ptl(l‘)gp
/ P (2)qp () f () d = / pe (2) gy () f () dax + / po (2)gp (@) (2)dz <p-+ 2
0 0

py () >p

for all ' >t. Taking p, z low enough yields a contradiction.

31. Suppose not, i.e., there is ACJ[e,1—¢] with positive measure and C' >0 such that, for every

x €A, Wy, (z) <C for arbitrarily high n. But then ACU,, >, An ={z: W4, () <C} for all ng, and |A, | <
ht2

Me T [e] N

32. Recall that ct(x) <yWp and {t <Me~ 2% for all t. Take z such that Wi, (z) = 0o and Q(z):=

157 Qi(x)&rdt < fo x) f(x)de < [7°( %)ﬁtdt< 00; such x must exist if the market-clearing constraint

is not violated. We can then show that, for ¢>t,, Wi(zx)>(Wy, (z) — Q(x) —yWo)e?t~tn) L4 Wy, so
taking n large enough that Wi, (x) > Q(z)+~vyWo yields the result.

which goes to zero exponentially, a contradiction.
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For part (ii), we give a formula for Q¢(z). Denote féﬁsds:g, and suppose Qz(z)>0
for all t<t(z) and Qz(z)=0 for t>t(x) for some t(z)>t. Using equations (A.11) and
(A.13),

ct(w;suce) = efgrt“dfco (x;8ucC) = WY (ZO) co(z;suce) (A.17)
t
Qula) =eHTATDE) gy, (A18)

Substituting equations (A.9), (A.17) and (A.18) into equation (A.12) yields

Wi (x) =y Wy(z) - o 1“fdgco(gc;succ) [Apim)} ’ —& (efff Ffdfc()(x;;ucc) —W (x))

:(’Y+§t)Wt(a?)—efotrdecO(gc;succ)[( & )64_&]_

Apt () ¥

Using the method of variation of parameters, for some Cj,

=

t
Wy(x) = CoeVt 6t — cq(z;5ucc) T4 / G (50) iz

0 fz

l(kpiz(ff))éJr%

Pluggmg in t=0 yields Cy=Wj. Denoting the factor multiplying cq(z;succ) by Z;, and
Ye=—2+ % —7t—C,

-

1 1 (@) Sy |°
%% fWge'YHthcO T58UCC) Ly () = —C )= —co(z,succ elo Trdt| M)
t(z) (%) ( )Zi(2) 5 t(z) () 5 ( ) Wt ()

Woe’yt(I)JrCt(z)

co(z,succ) = o I
1 (M@ & e

Zt($)+§6f0 ' |:)‘pt(ac)(z):|
Wo
of(_e Vo, ¢ iy (€0 \T
Z Sz t(x
e ()] () + ] e+ 2 ()
Substituting this value of cg(z;succ) into the previous equations
_ Aty Gt 1 %
Woe™ 8 1% (&7)
et (z;suce) = - S -
t(z) Yy (L g &z 9, & 1 V() 3
o ¢ (52) {(Apz( )) + }der et (Apt(ac)( ))
aL G 5
Woe ot (2
Ct(x _ (Apt(x))
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10 (2)° [ (i) + 5]+ 360 ()
e <¢>é{<m>é+ﬂdﬂ o ()
o () 1 () () 8 o3 )

10 () (st 4 5o ()’

If the agent holds positive shares all the way up to the firm’s stopping time ¢y, the
same equations apply, writing ¢y in place of ¢(2).3® From the last equation, part (ii) is
immediate if comparing two agents z <z’ with the same quitting time (¢(z)=t(z")), or
if both hold shares until ¢y. This argument extends to the general case.4

For part (iii), set #=1. Recall that, in this case, g;(«)>0 if and only if )\péit(z)> 1.

Wi () = Woe V't 6t

Q( ) W0€7t+Ct

Our expression for Q;(x) simplifies to

Lo=M=yt L _ (@) o=he—yz [ze M 4ioz | 1] g, 1o=Xi(2)—yt(a) ce M) 41z
Qt(ﬂf) 776 &t ft Aze—Az +’Y dz ’ye \ze— (@)
AR (ac) _ Az 1 _ —Xt(z) 41
Woe I Az—yz W ; dz+ie At(z)— Wt(x)w

Qt(aj):WOeQ [m (e_ktg\ _)‘t—i-l) ]
t

In general, Qt(x)zmax{WoeCt [x(e*)‘t%—e*/\t—i—l)—1},0}.35 This is MLRP-
A
&

e—At_

increasing in ¢ if and only if A(t)= e M 4+1 is decreasing in t. The market-

clearing constraint is

1
Woe@/ max{zA(t)—1,0} f(z)de=h+p— p:.
0

The log-derivative of ect with respect to t is &= ,7 _ftp o while the log-derivative of the

right-hand side is m, a lower value. Hence A(t) is decreasing in ¢, as we wanted.

33. If the safe policy is adopted at to, this affects share prices, as p¢ t—t—> %, but it has no impact
—to

on &; or any other aspect of the solution: the windfall of switching to the safe policy is baked into share
prices. If agents are assumed to initially hold shares, this increases their initial wealth, but there are no
other changes.

34. Briefly, applying equations (A.14) and (A.15), we can show that, if facing two price

paths (& )¢, (ét)t such that ét <& for t in some set A and ét:& elsewhere, then ‘;‘(Z”z/,)>§
t

VC‘Z((QC;/)), ée(x)<ér(z), and & (z)<ci(z) for all t<infA, whence Qu(z')<Qe(z’) for all t¢A,

l ~
as Qt(a:’):max{ct(z') {% (M)e —W‘(x/)],()} Then we can replace the path & with &=

£t ct(a’)

0 - -
min (ﬁt,)\pt(m)<7%ﬁ;)> ) By construction, Q:(z)=Q:(z), Qi(z')<Qi(x) for all t¢ A, and our

formula applies to Q;(z), Q¢(z’) since both agents weakly want to hold shares at all times.
35. This expression is correct even if the agent’s share demand switches multiple times between
positive and zero in the future: in fact, it does not depend on the agent’s future choice set at all.
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Proof. of Corollary 2 In this case, the instantaneous cost of a share is ypr—p},+Kkj,

the gain from a success is kfl—’tht%f ptf(%fkt>7 and the windfall from switch-

. . . —pl 4k
to the safe policy is £ — —(9—16). Redefine & = PPl =
ing safe policy is 2 —pr—(2—ke ne & e —— Qt(2)

gt () (lﬁ%h—i—%—pt—i—kt). The same proof of Proposition 4.(i) applies, so long as

kovp  g—a s—a _
( h+ 5 pt—i—k:t) and ( 5 pt+l<:t) are bounded away from zero for all ¢ large

enough.

For the sake of contradiction, suppose liminfs_, oo (%h—i— g;—a —pe+ ]ft) —0.36 Equiv-

%. We will argue that then limsupé; = oo. Indeed, if p; — k¢ has local
maxima arbitrarily close to g;—a, & goes to infinity along a sequence of such maxima.
If pt—Fk¢ has no local maxima for ¢ greater than some tg, it must instead converge

monotonically to %, and p} —k} must be arbitrarily close to zero for large values of ¢,

with the same result. But then there is ¢ for which & > A\, whence Apéit(x) <1 for all agents
and, as shown in Proposition 4, no one holds shares, a contradiction.

Because the gain from a success is bounded away from zero, there is M >0 such that
& < Me %0 for all ¢, as shown in Proposition 4.(i), and as & —0, p;—0. (Note that
these partial results did not require the gains from the safe policy to be bounded away
from zero.) Then the windfall from switching to the safe policy is also bounded away

from zero, and the rest of the proof goes through. ||

alently, limsupp; =
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